Integral points on twisted Markoff surfaces

نویسندگان

چکیده

We study the integral Hasse principle for affine varieties of shape a x 2 + y z − = m , using Brauer–Manin obstruction, and we produce examples whose Brauer groups include 4-torsion elements. describe these elements explicitly, in some cases, show that there is no obstruction to them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Points on Punctured Abelian Surfaces

We study the density of integral points on punctured abelian surfaces. Linear growth rates are observed experimentally.

متن کامل

Integral Points on Generic Fibers

Let P (x, y) be a rational polynomial. If the curve (P (x, y) = k), k ∈ Q, is irreducible and admits an infinite number of points whose coordinates are integers, Siegel’s theorem implies that the curve is rational. We deal with the case where k is a generic value and prove, in the spirit of the Abhyankar-MohSuzuki theorem, that there exists an algebraic automorphism sending P (x, y) to the poly...

متن کامل

Integral Points on Hyperelliptic Curves

Let C : Y 2 = anX + · · · + a0 be a hyperelliptic curve with the ai rational integers, n ≥ 5, and the polynomial on the right irreducible. Let J be its Jacobian. We give a completely explicit upper bound for the integral points on the model C, provided we know at least one rational point on C and a Mordell–Weil basis for J(Q). We also explain a powerful refinement of the Mordell–Weil sieve whic...

متن کامل

Integral Points on Cubic Hypersurfaces

Let g ∈ Z[x1, . . . , xn] be an absolutely irreducible cubic polynomial whose homogeneous part is non-degenerate. The primary goal of this paper is to investigate the set of integer solutions to the equation g = 0. Specifically, we shall try to determine conditions on g under which we can show that there are infinitely many solutions. An obvious necessary condition for the existence of integer ...

متن کامل

On spun-normal and twisted squares surfaces

Yoshida in [6] and Tillmann in [3] describe di erent methods of producing surfaces within a 3-manifoldM with boundary from ideal points of the deformation variety of M , given a particular ideal tetrahedralisation of M . The Yoshida construction builds a surface from twisted squares within the tetrahedra, the Tillmann construction results in a spun-normal surface relative to the tetrahedra. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2021

ISSN: ['0022-314X', '1096-1658']

DOI: https://doi.org/10.1016/j.jnt.2020.06.012